University of Alaska Southeast
FY21 Facilities Benchmarking & Analysis
Comprehensive Facilities Intelligence Solutions

- **Facilities Benchmarking & Analysis**: Take control of your facilities and make the case for change without the guesswork.
- **Facilities Assessment & Planning**: Plan and execute capital investment plans that are inclusive, credible, flexible, affordable and sustainable.
- **Space Utilization**: Ensure your space is working up to its full potential.
- **Sustainability Solutions**: Measure and improve environmental stewardship.
Vocabulary for Facilities Benchmarking & Analysis

Annual Stewardship
The annual investment needed to ensure buildings will properly perform and reach their useful life "Keep-Up Costs".

Asset Reinvestment
The accumulation of repair and modernization needs and the definition of resource capacity to correct them "Catch-Up Costs".

Operational Effectiveness
The effectiveness of the facilities operating budget, staffing, supervision, and energy management.

Service
The measure of service process, the maintenance quality of space and systems, and the customers opinion of service delivery.

Asset Value Change
Operations Success
University of Alaska – Southeast Peer Institutions

Return on Physical Assets (ROPA+) includes all space at UAS totaling 556,487 GSF

<table>
<thead>
<tr>
<th>Facilities Peer Institutions</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Maine at Fort Kent</td>
<td>Fort Kent, ME</td>
</tr>
<tr>
<td>University of Maine at Farmington</td>
<td>Farmington, ME</td>
</tr>
<tr>
<td>University of Maine at Machias</td>
<td>Machias, ME</td>
</tr>
<tr>
<td>University of Maine at Presque Isle</td>
<td>Presque Isle, ME</td>
</tr>
<tr>
<td>Slippery Rock University of PA</td>
<td>Slippery Rock, PA</td>
</tr>
<tr>
<td>Mansfield University of PA</td>
<td>Mansfield, PA</td>
</tr>
<tr>
<td>Lockhaven University of PA</td>
<td>Lock Haven, PA</td>
</tr>
<tr>
<td>University of Maine at Augusta</td>
<td>Augusta, ME</td>
</tr>
</tbody>
</table>

Comparative Considerations

Size, technical complexity, region, geographic location, and setting are all factors included in the selection of peer institutions.
Core Campus Observations

Space

UAS’s space profile is different than peer institutions in several key areas:

- Younger, lower risk space than peers due to new construction and renovation, especially at Ketchikan campus
 - UAS is in an advantageous situation to manage their campus age and remain at, or above, their Space KPI target of 50% of space being younger than 25 years old

- Lower population density
 - UAS has seen enrollment decrease in greater magnitude than peers. Creative strategies will need to be implemented to hit the density KPI target of 250

Capital

- Investment focus on existing space has historically managed age and deferred maintenance need but has decreased in recent years
- The historically reliable one-time sources of capital that helped achieve funding targets have dropped in recent years
- UAS can manage deferred maintenance through divestment and demolition of space to maintain high performing FCI compared to KPI target

Operations

- Historically operated with a higher budget than peers, but decreased below peer levels in recent years
- UAS has increased PM spending in recent years and spends a larger percentage of operation budget on PM compared to peers
- Staffing levels, supervision, and materials fluctuate across trades shops, but results are consistent and competitive
Space Profile
UAS’s Technical Complexity is On-Par With Peers

Technical Complexity

Areas Impacted by Tech Rating

Energy Consumption Maintenance Staffing Replacement Values Stewardship Targets Operational Demand

Tech Rating Distribution

Institutions arranged by Technical Complexity

© 2022 The Gordian Group, Inc. All Rights Reserved
UAS’ Campus has Grown Similar to Peers in GSF

However, total enrollment has decreased by 82%, while peers saw a 27% decrease
UAS has a Lower Density Campus than Peers

Density factor measures the busyness of campus

*Density is calculated using On-Campus Student FTEs, Faculty FTE, and Staff FTE

Areas Impacted by Density Factor

- Wear and Tear on Space
- Custodial Operations
- Energy Demand

Institutions arranged by Density Factor

© 2022 The Gordian Group, Inc. All Rights Reserved
UAS Step to Reach Target

UAS can add FTE’s, decrease usable square footage, or both to reach target

Total on Campus FTE’s by Density GSF

![Graph showing FTE's by Density GSF]

Scenarios to Reach 250 KPI Target:
1. Decrease total GSF by 200,000
2. Increase total FTE’s by 500 (no space Changes)
3. Use a targeted approach to decrease GSF, which includes:
 - Demolish the NSRL: 17,591 GSF
 - Demolish Mattocks House: 1,200 GSF
 - Sell and/or recategorize Mathisen House GSF: 1,604.00
 - Should Mathisen be included in Density calculations?
 - Adjust Density GSF at Donald Sperl Joint Use to 27,707 (50%)
 - What portion of building is not-useable by UAS?
 - Remove Fitzgerald house from building inventory: 2,279.00

 Total GSF removed from Density – 50,381.5
 - Still requires adding 400 FTE’s

 - Are there other buildings that are underutilized, which could have increased utilization allowing for more demolition of space?

Density is calculated using On-Campus Student FTEs, Faculty FTE, and Staff FTE
Building and Grounds Intensity

UAS’ smaller buildings and compact grounds space produces challenges in efficiency for staff.
UAS Carries a Significantly Younger Campus Age

UAS has started renovating buildings which offsets aging

Construction vs. Renovation Age

Age dropped due to renovations of the Student Housing Units A, B, D & G

UAS’s Renovation Age is 10.5 years less than Peers

UAS Construction Age UAS Renovation Age Peers Construction Age Peers Renovation Age
Ketchikan & Juneau are Younger through Renovations

These two campuses have firmly reduced their age through full building renovations.
UAS Has More Low Risk Space Than Peers

Lower risk affords the opportunity to plan ahead for future needs

Campus Renovation Age by Category

- **High Risk**
 - UAS: 12%
 - Peer Average: 41%

- **Over 50**
 - UAS: 37%
 - Peer Average: 18%

- **25-50**
 - UAS: 28%
 - Peer Average: 27%

- **10-25**
 - UAS: 23%
 - Peer Average: 14%

- **Under 10**
 - UAS: 28%
 - Peer Average: 27%

Operational Demands:
- **React as Needed:** Issues in components past the end of their lifecycles will demand reactive maintenance.
- **Balance PM and Reactive Maintenance:** Younger components still require PM. Aging components require reactive maintenance.
- **Focus on PM:** Significant need for PM in young systems.

Capital Risk:
- **Over 50:** Highest Risk: Life cycles of major components past due – end of building life cycle approaching.
- **25-50:** Higher Risk: Life Cycles coming due in core building components.
- **10-25:** Medium Risk: Lower cost space renewal updates needed.
- **Under 10:** Low Risk: “Honeymoon” period – little need for capital reinvestment.
Understanding Campus Age

Renovations at Ketchikan make systems younger

Campus Age by Category

<table>
<thead>
<tr>
<th>Location</th>
<th>Construction Age</th>
<th>Renovation Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juneau</td>
<td>76%</td>
<td>24%</td>
</tr>
<tr>
<td>Ketchikan</td>
<td>28%</td>
<td>53%</td>
</tr>
<tr>
<td>Sitka</td>
<td>72%</td>
<td>72%</td>
</tr>
</tbody>
</table>

- Under 10
- 10 to 25
- 25 to 50
- Over 50

© 2022 The Gordian Group, Inc. All Rights Reserved
UAS Has Flexibility of Managing a Young Campus

UAS will continue to be meet or exceed KPI space target, regardless of approach

Campus Renovation Age by Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Over 50</th>
<th>25-50</th>
<th>10-25</th>
<th>Under 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of GSF</td>
<td>12%</td>
<td>17%</td>
<td>6%</td>
<td>37%</td>
</tr>
<tr>
<td>High Risk</td>
<td>37%</td>
<td>33%</td>
<td>31%</td>
<td>37%</td>
</tr>
<tr>
<td>UAS FY26: No Changes</td>
<td>28%</td>
<td>44%</td>
<td>42%</td>
<td>23%</td>
</tr>
<tr>
<td>UAS FY26: Density</td>
<td>23%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Changes and Sitka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operational Demands:
- React as Needed: Issues in components past the end of their lifecycles will demand reactive maintenance.
- Balance PM and Reactive Maintenance: Younger components still require PM.
- Focus on PM: Significant need for PM in young systems.

Capital Risk:
- Higher Risk: Life Cycles coming due in core building components.
- Medium Risk: Lower cost space renewal updates needed.
- Low Risk: “Honeymoon” period – little need for capital reinvestment.
Understanding the Impact of Age on Future Need

Different construction waves will have competing life cycle needs in the future.

<table>
<thead>
<tr>
<th>System</th>
<th>Life Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing</td>
<td>35 years</td>
</tr>
<tr>
<td>Exteriors</td>
<td>30 years</td>
</tr>
<tr>
<td>HVAC</td>
<td>30 years</td>
</tr>
<tr>
<td>Roofing</td>
<td>25 years</td>
</tr>
<tr>
<td>Electrical</td>
<td>25 years</td>
</tr>
</tbody>
</table>

Year in which building space was constructed/renovated
Capital Profile
Capital Funding Sources

Total Operations and Asset Funding

Alaska Terminology
- Utilities & Grounds & Custodial
- Maintenance & Repair – M&R
- Repair & Renew - R&R

Sightlines Terminology
- Operations & Maintenance
 - People
 - Expenses
 - Utilities
 - Daily Service & PM
 - Utilities
- Fund 1
- Fund 2-9
- Projects
 - Recurring Project Dollars
 - One-Time Project Dollars
 - Annual Stewardship
 - Asset Reinvestment
Increased Focus on Existing Space in Recent Years

Existing Space investment decreased in recent years, but has seen high investment.
Defining an Annual Investment Target

Annual Funding Target: $4.5M

FY21 Annual Investment Target

- 3% Replacement Value: $10.0M
- Life Cycle Need: $4.9M
 - Envelope/Mechanical: $3.7M
 - Space/Program: $1.2M
- Annual Investment Target: $2.8M

Replacement Value: $332.1M

- 3% Replacement Value is one of the standard depreciation models used to determine the expected total dollars needed to be put into assets annually to sustain them.
- Life Cycle Need represents the total dollars needed to replace components & systems as they come due without accounting for modernization.
- Life Cycle needs are discounted to account for intentional deferral, functional obsolescence, and extended life cycles based on effective maintenance programs.
Recurring Capital Spending Falls Short of Target

In FY19, FY20, and FY21 UAS has increased its backlog

Total Capital Investment vs. Funding Target

- Decreasing Backlog & Risk
- Maintaining Backlog & Risk
- Increasing Backlog & Risk

Fund 1 Projects: Annual Stewardship
Funds 2-9 Projects: Asset Reinvestment
Juneau Capital Spending Sets the Trend

Unlike the combined spending trend, Juneau’s trend begins to decrease in FY18

Juneau Campus’ Total Capital Investment vs. Juneau Funding Target

- **Decreasing Backlog & Risk**
- **Maintaining Backlog & Risk**
- **Increasing Backlog & Risk**

- **Annual Stewardship**
- **Asset Reinvestment**
- **Annual Investment Target**
- **Life Cycle Need**

Fund 1 Projects: Annual Stewardship
Funds 2-9 Projects: Asset Reinvestment

© 2022 The Gordian Group, Inc. All Rights Reserved
Ketchikan Capital Spending Frequently Meets Target

In FY18, Ketchikan spent $3.7 Million into the Maritime Center

Ketchikan Campus’ Total Capital Investment vs. Ketchikan Funding Target

- Annual Stewardship
- Asset Reinvestment
- Annual Investment Target
- Life Cycle Need

GORDIAN® Fund 1 Projects: Annual Stewardship Funds 2-9 Projects: Asset Reinvestment

© 2022 The Gordian Group, Inc. All Rights Reserved
Sitka’s Lower Capital Spending Increases Backlog and Risk

In FY13 $1.6 Million went into Campus Completion, capital targets missed since FY15

Sitka Campus’ Total Capital Investment vs. Sitka Funding Target

- Decreasing Backlog & Risk
- Maintaining Backlog & Risk
- Increasing Backlog & Risk

Annual Stewardship Asset Reinvestment Annual Investment Target Life Cycle Need

GORDIAN® Fund 1 Projects: Annual Stewardship Funds 2-9 Projects: Asset Reinvestment

© 2022 The Gordian Group, Inc. All Rights Reserved
Historic Annual Stewardship Higher at UAS

Asset reinvestment, or one-time, sources of funding close the gap to reach capital targets

Total Capital Investment as a Percent of Funding Target

University of Alaska – Southeast

Peer Institutions

Capital Spending % of Total Target

-90%

Target

69%

Annual Stewardship
Asset Reinvestment
Average

Fund 1 Projects: Annual Stewardship
Funds 2-9 Projects: Asset Reinvestment

© 2022 The Gordian Group, Inc. All Rights Reserved
Disparity In Reaching Targets Across Campuses

Large infusions of capital inflate average spend to target

Total Capital Investment as a Percent of Funding Target

Juneau Campus

Ketchikan Campus

Sitka Campus

Capital Spending % of Total Target

% of Total Target

0%

50%

100%

150%

200%

250%

300%

Annual Stewardship

Asset Reinvestment

Average

Target

Fund 1 Projects: Annual Stewardship
Funds 2-9 Projects : Asset Reinvestment
Total Need is Greater than Peers

Total need based on FY21 Facilities Condition Assessment

Total Asset Reinvestment Need $/GSF
Regionally Adjusted

<table>
<thead>
<tr>
<th>University of Alaska – Southeast</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2006</td>
</tr>
<tr>
<td>2007</td>
<td>2007</td>
</tr>
<tr>
<td>2008</td>
<td>2008</td>
</tr>
<tr>
<td>2009</td>
<td>2009</td>
</tr>
<tr>
<td>2010</td>
<td>2010</td>
</tr>
<tr>
<td>2011</td>
<td>2011</td>
</tr>
<tr>
<td>2012</td>
<td>2012</td>
</tr>
<tr>
<td>2013</td>
<td>2013</td>
</tr>
<tr>
<td>2014</td>
<td>2014</td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
</tr>
<tr>
<td>2016</td>
<td>2016</td>
</tr>
<tr>
<td>2017</td>
<td>2017</td>
</tr>
<tr>
<td>2018</td>
<td>2018</td>
</tr>
<tr>
<td>2019</td>
<td>2019</td>
</tr>
<tr>
<td>2020</td>
<td>2020</td>
</tr>
<tr>
<td>2021</td>
<td>2021</td>
</tr>
</tbody>
</table>

© 2022 The Gordian Group, Inc. All Rights Reserved
The Effect of Demolitions and Divestment on FCI

UAS can greatly improve FCI by completing planned divestment and demolition.

FCI by Age Category

- **FY21 FCI:** 0.09
- **FY21 FCI: NSRL Demolition:** 0.09
- **FY21 FCI: Mattocks Demolition:** 0.04
- **FY21 FCI: Gordian Recommendation:** 0.02

Gordian recommends demolition or divestment of:
- Mattock House
- Knobe House
- NSRL
- Mathisen (Sell)

- **Space Under 25**
- **Space Over 25**
- **Target: 0.15**
Gordian D&D Plan Reduces Capital Need by $1.6 M

The NSRL demolition accounts for a $1 Million reduction in capital need

Identified Needs by Timeframe

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Total Need, $ in millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlog (Past Due)</td>
<td>$3.99</td>
</tr>
<tr>
<td>Timeframe A (1-3 years)</td>
<td>$3.89</td>
</tr>
<tr>
<td>Timeframe B (4-7 years)</td>
<td>$9.21</td>
</tr>
<tr>
<td>Timeframe C (8-10 years)</td>
<td>$10.48</td>
</tr>
</tbody>
</table>

Total Need, $ in millions

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>$</th>
<th>$</th>
<th>$</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 10-Year Needs</td>
<td>27.6</td>
<td>26.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need after D&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of projects

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>#</th>
<th>#</th>
<th>#</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlog (Past Due)</td>
<td>65</td>
<td>58</td>
<td>162</td>
<td>213</td>
</tr>
</tbody>
</table>
Operations Success
Capital Funding Sources

Total Operations and Asset Funding

- Utilities & Grounds & Custodial
- Maintenance & Repair – M&R
- Repair & Renew - R&R
- Fund 1
- Fund 2-9

Projects

- Operations & Maintenance
- People
- Expenses
- Utilities
- Daily Service & PM
- Utilities
- Recurring Project Dollars
- Annual Stewardship
- One-Time Project Dollars
- Asset Reinvestment

Alaska Terminology

Sightlines Terminology

© 2022 The Gordian Group, Inc. All Rights Reserved
Facilities Operating Expenditures vs. Peers

UAS has reduced its Daily Service expenditures in recent years below peer average.

Facilities Operating Actuals
Regionally Adjusted

Universities of Alaska - Southeast

Peer Institutions

$/GSF

Daily Service PM Utilities Avg.
Budget Cuts Limit Purchasing Power

2021 difference amounts to $2.1M less buying power than 2006 budget

Facilities Operating Actuals

$/GSF

Daily Service
PM
Inflation

© 2022 The Gordian Group, Inc. All Rights Reserved
Juneau’s Decreasing Budget Follows University Trend

2021 difference amounts to $1.6M less buying power than 2006 budget

Facilities Operating Actuals

<table>
<thead>
<tr>
<th>$/GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>2009</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>2012</td>
</tr>
<tr>
<td>2013</td>
</tr>
<tr>
<td>2014</td>
</tr>
<tr>
<td>2015</td>
</tr>
<tr>
<td>2016</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>2018</td>
</tr>
<tr>
<td>2019</td>
</tr>
<tr>
<td>2020</td>
</tr>
<tr>
<td>2021</td>
</tr>
</tbody>
</table>

- Blue: Daily Service
- Red: PM
- Black Dash: Inflation
Ketchikan Budget Emphasizes PM in Recent Years

Investments into PM will extend building lifecycles and decrease capital need

Facilities Operating Actuals

$/Gsf

Daily Service PM Inflation

© 2022 The Gordian Group, Inc. All Rights Reserved
Sitka’s Recent Budget Lacks Purchasing Power of Past Years

Sitka’s operational spending decreased 41% since 2006, accounting for inflation

Facilities Operating Actuals

<table>
<thead>
<tr>
<th>Year</th>
<th>Daily Service</th>
<th>PM</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>3.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2007</td>
<td>3.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2008</td>
<td>3.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2009</td>
<td>3.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2010</td>
<td>3.0</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2011</td>
<td>2.9</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2012</td>
<td>2.8</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2013</td>
<td>2.7</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2014</td>
<td>2.6</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2015</td>
<td>2.5</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2016</td>
<td>2.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2017</td>
<td>2.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2018</td>
<td>2.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2019</td>
<td>2.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2020</td>
<td>2.0</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2021</td>
<td>1.9</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Facilities Operating Expenditures vs. Peers

UAS has decreased its daily service expenditures, while Peer spending has increased.

Facilities Operating Actuals
Regionally Adjusted

<table>
<thead>
<tr>
<th>$/GSF</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>UAS FY10</th>
<th>UAS FY15</th>
<th>UAS FY21</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$8.47</td>
<td>$7.10</td>
<td>$6.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Daily Service
- PM
- Peer Average FY21
- Peer Average FY15
- Peer Average FY10
UAS Allocates More Resources to PM than Peers

Recent increases in PM spending result in UAS approaching “Best Practice Range”
Utility Operating Expenditures Compared to Peers

UAS versus Peer Utility $ per GSF
Regionally Adjusted

University of Alaska - Southeast

Peer Institutions

$/GSF

© 2022 The Gordian Group, Inc. All Rights Reserved
Total Energy Consumption

UAS has seen consumption increase since FY19, but it is still well below peers

Total Energy Consumption vs. Peers

University of Alaska – Southeast

Peer Institutions

BTU/GSF

Fossil Electric Average

91,221 96,227
Total Energy Consumption

When normalizing by degree day, UAS’ decrease in consumption is more pronounced.

Total Energy Consumption vs. Peers
Normalized by Degree Days

<table>
<thead>
<tr>
<th>University of Alaska – Southeast</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.93</td>
<td>10.35</td>
</tr>
</tbody>
</table>

© 2022 The Gordian Group, Inc. All Rights Reserved
Energy Expenses Fluctuate in Consistent Manner

UAS' total energy costs continues to be well below peer average

Total Energy Cost vs. Peers
Regionally Adjusted

$/MMBTU

$70
$60
$50
$50
$40
$30
$20
$10
$0

University of Alaska – Southeast

Peer Institutions

Fossil Electric Average

$47.07

$55.74

© 2022 The Gordian Group, Inc. All Rights Reserved
Differences in Unit Costs are Growing vs. Peers

Both Fossil and Electric unit costs are lower than peers, when regionally adjusted.
Maintenance Staffing Coverage

Coverage ratios have begun to increase in recent years, due to decreases in FTE’s.
Maintenance Metrics

UAS has fewer maintenance supervisors, but more staff and material spend

Maintenance Staffing

Maintenance Supervision

Maintenance Materials

Regionally Adjusted

General Repair / Impression

Institutions arranged by Technical Complexity

Peer Average

© 2022 The Gordian Group, Inc. All Rights Reserved
Custodial Staffing Coverage

Custodial staff coverage has returned to FY18 levels
Custodial Metrics

UAS has more custodial supervisors, but less custodial staff, equivalent material spend

Custodial Staffing

Custodial Supervision

Custodial Materials
Regionally Adjusted

Cleanliness

Institutions arranged by Density Rating

© 2022 The Gordian Group, Inc. All Rights Reserved
Grounds Staffing Coverage

Coverage stayed mostly steady until a notable increase happened in recent years.
Grounds Metrics

UAS has the highest grounds intensity, which correlates with lower rates of coverage

Grounds Staffing

Grounds Supervision

Grounds Materials
Regionally Adjusted

Grounds Inspection Score

Institutions arranged by Grounds Intensity

© 2022 The Gordian Group, Inc. All Rights Reserved
Conclusion
Key Takeaways

• UAS’ young space profile benefits from proactive capital and operational approaches – because of this UAS can be flexible in their management of campus space. However, UAS should consider what spaces are under utilized, in order to take space offline and increase user density.

• Capital spending should continue to focus on reinvesting into existing space. The good condition of younger buildings allows UAS the opportunity to target invest into older, higher FCI buildings. However, recent decreasing trends in capital investment could lead to more reactive funding predicaments.

• Small buildings and small grounds space produces efficiency challenges for maintenance and grounds staff, requiring more FTEs to tackle problems effectively. Identifying buildings to divest resources from will ease this operational strain challenge.
Questions & Discussion