Program Overview
The Power Technology Program at UAS provides students with the skills they need to find good paying jobs. The Power Technology programs are dedicated to providing quality learning opportunities in a supportive environment where power technology students can learn new skills or advance existing skill levels. The Power Technology department provides the knowledge, tools and experiences that enable students to develop professionally and experience personal growth and enrichment.

Program Learning Outcomes
∙ Comply with personal and industry safety practices specific to the diesel industry.
∙ Evaluate and apply technical information and testing procedures from a variety of sources to troubleshoot diesel equipment.
∙ Maintain, diagnose, and repair the following systems: engine, electrical, hydraulic, refrigeration, drive train, brakes, steering/suspension, marine vessel components and AC power generation.
∙ Communicate and document work performed using trade specific language.
∙ Act responsibly and ethically as an employee by being punctual, adhering to company policies and interacting positively and appropriately with co-workers, supervisors and customers.
∙ Apply research techniques to identify emerging heavy equipment technologies.

Data Collection and Analysis
∙ In some Power Technology (PT) class’s students take pre-course test. All PT classes end with a written final exam, some finals have a hands on activity or identification of parts and/or components included. Some classes have a final project. These methods assess learning outcomes. Analyses of outcomes are used to determine material that needs additional and or different coverage.
∙ Project work and lab assignments show tangible evidence of student understanding of lectures and demonstrations.
∙ Results of on-line course evaluations are reviewed and used to assess course strength and weaknesses. Professional advisory committees are consulted regularly for industry trends and work place skills expected of graduates of the programs.
∙ All PT courses are structured with a lecture and lab element. The time for each class session is divided approximately in half. So the average class meets twice a week for four hours for a total of 13 class sessions.

∙ Lecture:
 ∙ Involves a PowerPoint or discussion with a training aid
 ∙ Reading is assigned with homework based on the lecture
 ∙ Parodic quizzes based on homework
• Midterm based on quizzes

• Final based on midterm and quizzes and homework and lab assignments

• Lab:
 • Lab assignments and or projects are based on the lecture of that day
 • The homework then reinforces the hands on portion that was done in the lab.

<table>
<thead>
<tr>
<th>Lecture Grade Rubric for All DESL Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Student has no unexcused absences or tardies. Demonstrates an excellent understanding of written and presented material.</td>
</tr>
</tbody>
</table>

Lab Rubric for DESL S110 and S130 (most diesel classes)
What it takes to get a good lab grade. Ten (10) points possible

1-3 points
 • Little or no advance preparation
 • Lets others set and pursue the agenda
 • Observes passively and says little or nothing
 • Responds to questions if specifically asked
 • Will do something if told exactly what to do
 • On phone or taking breaks too often
 • Stands around chatting (not about the project at hand)

4-7 points
 • Moderately prepared in advance
 • Takes some part in setting group goals and agendas
 • Participates in discussions, letting others provide the direction
 • Occasionally introduces information or asks questions
 • Is willing to find resources that provide additional information (manuals, online)
 • Capable and willing to do minimal reading in order to follow a procedure

8-10 points
Well prepared in advance
Takes a large part in setting group goals and agendas
Actively participates in discussion and asks questions
Listens actively and shows understanding
Volunteers willingly and carries own share of groups responsibilities

Willing to read and reread a manual to gain enough understanding to do procedure.
Will help another group if has enough understanding to do so

Classes studied in this report to determine if Program Learning Outcomes (PLO) are being met
1. DESL S110 Diesel Engines
2. DESL S130 Refrigeration and Air Conditioning
3. DESL S121 Basic Electrical

1. DESL S110 Diesel Engines

<table>
<thead>
<tr>
<th>Engine Component Identification Pretest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering course skill level</td>
</tr>
<tr>
<td>Number of students</td>
</tr>
</tbody>
</table>

Completely Disassembled Engines
The lab portion of this class involves a complete tear down of a diesel engine, identifying and measuring all parts for wear, then reassembly and starting the engine. Successful assembly of an engine directly relates to the students understanding of the various systems that make up a diesel engine (lecture) and how well the student can apply the information in the service manual to hands on procedures in order to reassemble the engine.

The chart below shows a direct correlation between a student’s letter grade in lecture and how well they did on their lab project. In engines class the lab project lasts the entire semester.

Lab Project Posttest Grade Rubric
Engine run (posttest)

<table>
<thead>
<tr>
<th>Engine run after initial assembly with no instructor intervention</th>
<th>Engine needed minor troubleshooting to run. Such as: injectors needed adjustment, fuel pump needed retimed</th>
<th>Engine needed instructor troubleshooting to run. Such as: cam timing was wrong, wrong sequence was used for adjusting valves and injectors. Internal components assembled wrong</th>
<th>Engine did not run</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of engines</th>
<th>3</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student letter grade</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Number of students</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Recommendation for DESL S110: This is 2023 and electronic engines (computer controlled) almost completely dominate the roads, job sites and mines. Out of the 20 or so engines Power Technology has only 5 are electronic. We need to upgrade. The problem is electronic engines that come on a stand and ready to run cost in access of 60K.

Donations of electronic engines can be had but then the problem is in order to run an electronic engine a controller has to be built, this takes 20 to 30 hours of hi-tech electrical/electronic wiring. I personally have built two controllers and will continue, but they cannot be put into service (functional lab props) fast enough.

2. **DESL S131 Refrigeration and Air Conditioning**

Refrigeration and Air Conditioning Pretest

<table>
<thead>
<tr>
<th>Entering course skill level</th>
<th>Very Little Knowledge</th>
<th>Some Knowledge</th>
<th>Advanced Knowledge</th>
<th>Total Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

The EPA 608 refrigeration test is divided up into four parts: the Core test which must be passed in order to earn any of the Type I, Type II, and Type III. If the Core and Type I, II, III are passed a Universal Type is earned.

<table>
<thead>
<tr>
<th>Type of certificate</th>
<th>Core</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Universal Type</th>
</tr>
</thead>
</table>
The two charts above show that the students that did well in the lector and lab parts of DESL 130 also did well on the EPA exam. This year’s class was lacking the usual 3 or 4 students from industry that just take the class in order to get their EPA certificate so they can purchase large quantities of refrigerant.

3. DESL S121 Basic Electrical

In DESL S121 one lab assignment dealing with starters and starting systems and the corresponding quiz will be documented.

<table>
<thead>
<tr>
<th>Student letter grade for quiz #10</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

DESL S121 Lab Rubric

Student task performance is rated on a scale from 0 to 3.

In order to receive a rating of “3” on a task, the student must be able to demonstrate the following: · Explain thoroughly the purpose and procedures involved with the task in question. · Perform the task to completion while working independently. · Comply with all applicable personal and environmental safety practices during performance of the task.

In order to receive a rating of “2” on a task, the student must be able to demonstrate the
following: · Be able to answer basic questions about the task as posed by the instructor.
· Perform the task to completion with limited prompting by the instructor.
· Comply with all applicable personal and environmental safety practices during performance of the task.

In order to receive a rating of “1” on a task, the student must be able to demonstrate the following: · Perform the task to completion while relying on guidance from the instructor or a fellow student. · Comply with all applicable personal and environmental safety practices during performance of the task. A rating of “0” indicates the student has no knowledge of the task.

<table>
<thead>
<tr>
<th>Student proficiency in lab assignment #28 “Cranking circuit voltage drop test”</th>
<th>“3”</th>
<th>“2”</th>
<th>“1”</th>
<th>“0”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Grades Earned by Students in DESL S121

<table>
<thead>
<tr>
<th>Student letter grade</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>Total students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Recommendation for DESL S121: Basic Electrical class continues to give students trouble initially, this has been prevalent for the last few years. I attribute this to the kids not doing anything mechanical in the years before they enter college. For the second year in a row I have had to have extra class sessions on Saturdays and extend class times when possible in order to get the kids caught up to where they need to be in Basic Electrical so they can move on to Electrical II.

Improvements and future plans for tracking program learning outcomes:

· Class sizes were almost back to pre-covid. Classes run 8 to 12 students caps are at 16 students, we are lacking from what we are capable of doing. We need more recruitment.

The high school is no longer offering any shop classes so we no longer get the few from there. We need
more recruitment into the Diesel Programs, we need to expand that to state wide.

- The mechanical knowledge of the entry level student seems to be less and less. This has been prevalent for the last 4 years or so. Last year in Preventive Maintenance and Inspections class (first term class for new students) I wrote and extensive “component identification assignment” this is a very large assignment that is mostly completed by the student outside of normal class hours. This new approach seems to work well, it helps the student with little or no knowledge catch up to the students that come in with some knowledge without having to compromise the existing curriculum.

- This year we wrote a “tool identification quiz” this is another “before” entry level type assignment. It is also quite extensive and covers almost all the tools we use in our classes. It will be introduced in Diesel Engines class (also a first term class) in Fall of 2023.

- It is a tough battle to keep up with the demands of industry and to educate the student that enters the program with a diminished skill level. But as long as we can keep the innovative ideas flowing the student will prevail.